Dual-Mode HDAC Prodrug for Covalent Modification and Subsequent Inhibitor Release

نویسندگان

  • Kevin B. Daniel
  • Eric D. Sullivan
  • Yao Chen
  • Joshua C. Chan
  • Patricia A. Jennings
  • Carol A. Fierke
  • Seth M. Cohen
چکیده

Histone deacetylase inhibitors (HDACi) target abnormal epigenetic states associated with a variety of pathologies, including cancer. Here, the development of a prodrug of the canonical broad-spectrum HDACi suberoylanilide hydroxamic acid (SAHA) is described. Although hydroxamic acids are utilized universally in the development of metalloenzyme inhibitors, they are considered to be poor pharmacophores with reduced activity in vivo. We developed a prodrug of SAHA by appending a promoiety, sensitive to thiols, to the hydroxamic acid warhead (termed SAHA-TAP). After incubation of SAHA-TAP with an HDAC, the thiol of a conserved HDAC cysteine residue becomes covalently tagged with the promoiety, initiating a cascade reaction that leads to the release of SAHA. Mass spectrometry and enzyme kinetics experiments validate that the cysteine residue is covalently appended with the TAP promoiety. SAHA-TAP demonstrates cytotoxicity activity against various cancer cell lines. This strategy represents an original prodrug design with a dual mode of action for HDAC inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity-based probes for proteomic profiling of histone deacetylase complexes.

Histone deacetylases (HDACs) are key regulators of gene expression that require assembly into larger protein complexes for activity. Efforts to understand how associated proteins modulate the function of HDACs would benefit from new technologies that evaluate HDAC activity in native biological systems. Here, we describe an active site-directed chemical probe for profiling HDACs in native proteo...

متن کامل

Carbamate prodrug concept for hydroxamate HDAC inhibitors.

Reversible acetylation of histones and other proteins has emerged over the last 10 years as an important mechanism for cell proliferation and has been identified as a valuable target for anticancer drug design. Acetylation is executed and maintained by the histone acetyltransferases and reversed by their counterparts, histone deacetylases (HDACs). The first HDAC inhibitors have already been app...

متن کامل

Antitumor activity and pharmacologic characterization of the depsipeptide analog as a novel histone deacetylase/ phosphatidylinositol 3‐kinase dual inhibitor

Histone deacetylase (HDAC)/phosphatidylinositol 3-kinase (PI3K) dual inhibition is a promising strategy for the treatment of intractable cancers because of the advantages of overcoming potential resistance and showing synergistic effects. Therefore, development of an HDAC/PI3K dual inhibitor is reasonably attractive. Romidepsin (FK228, depsipeptide) is a potent HDAC inhibitor. We previously rep...

متن کامل

The dual mode of action of bistramide A entails severing of filamentous actin and covalent protein modification.

This study provides comprehensive characterization of the mode of action of bistramide A and identifies structural requirements of bistramide-based compounds that are responsible for severing actin filaments and inhibiting growth of cancer cells in vitro and in vivo. We rationally designed and assembled a series of structural analogs of the natural product, including a fluorescently labeled con...

متن کامل

HDAC Inhibitors and Heat Shock Proteins (Hsps)

Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2015